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ABSTRACT

Basora Rovira, Ricardo E. MSCE, Purdue University, December 2015. Vehicle Clas-
sification Method For Use With Rapidly Emplaced Mobile Bridges: A Sensitivity
Study. Major Professor: Shirley J. Dyke.

A feature detection algorithm is developed to determine which type of vehicle

crosses a mobile bridge using acceleration responses. The purpose of this thesis is to

examine the results sensitivity of the algorithm to various parameters that influence

the ability to correctly classify vehicles. Each of these results will play a role in

developing the most suitable procedure.

Using numerical and experimental results, the parameters studied are: bridge

length, vehicle speed, noise, sensor filtering, and soil conditions. Each parameter

is varied individually to determine how much it affects the ability of the method to

classify vehicles traversing the bridge. Consideration is given to how parameters could

be controlled under real world conditions to yield reliable results. The investigations

demonstrate that results vary slightly to noise levels, the length of the bridge is

constant once emplaced, sensor filtering setting can be fixed, soil condition impacts

are minimum, and the vehicle speed can be controlled if a ground guide is used.

Based on the observations, a generalized procedure is prepared which consists

of: creating a database with multiples parameters, controlling the parameters within

realistic constraints, and grouping similar vehicle responses. The procedure aims to

provide the best environment to produce reliable detection rates.
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1. INTRODUCTION

Every bridge designed is determined to have a finite or infinite life. Bridge lifetime is

calculated based on the stress ranges produced by vehicle crossings and fatigue per-

formance of the critical components [1]. This estimate assumes that traffic patterns

remain constant during the entire life, which is not realistic. However, updated his-

tograms and stress range studies are conducted to determine if a bridge’s lifetime has

been reduced or can be extended. This issue gets magnified in short span temporary

bridges due to variable boundary conditions.

Temporary bridges are used in a myriad of areas such as: military warfare, dis-

aster response, alternate routes, detours, among others. The same bridge may be

emplaced at different locations with multiple uses throughout its existence. A very

popular form of temporary bridge is the Acrow bridge [2]. Acrow bridges provide

relief while permanent bridges are built or repaired. The Federal Highway Adminis-

tration (FHWA) National Bridge Inventory (NIB) provides guidelines to determine

if a bridge is temporary [3]. However, the number of passes and stresses experienced

may vary greatly if they are emplaced along a highway as opposed to a rural road.

These very different parameters can make the bridge experience either very high stress

ranges, establishing a finite life, or very low stress ranges, establishing an infinite life.

Various methods and algorithms, both passive and active, have been designed and

used to monitor he behavior of our current infrastructure.

Active methods such as weigh-in-motion (WIM) and strain gages are popular in

bridges to monitor and update the vehicle histogram. WIM often uses piezoelectric

or quartz sensors in order to determine the axle weight, number of axles, speed and

gross vehicle weight [4]. However, in order to determine how a bridge behaves when

a vehicle crosses, strain gages are installed in specific locations to calculate stresses.
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These results help determine if the bridge lifetime changed for the better or worse.

However, they do have their limitations.

WIM requires bridge or road modifications to ensure a flushed transition. They

are very popular on roads, as they prevent overweight vehicles from damaging our

roads and also keep the static scales use to a minimum. However, WIM does not

replace static scales due to a restriction on the error tolerance [5]. Adaptive and error

reducing algorithms have been developed to increase their accuracy and continue to

identify the amount of overweight vehicles in our roads [4] [5]. Despite advances to

improve the accuracy of the WIM, it does not provide details on how bridges behave,

as strain gages do.

Strain gages are used extensively in specific regions of bridges to determine the

actual stress ranges experienced. However, strain gages have practical limitations and

need to be located in specific regions of the bridge to get the actual critical stress

ranges produced by vehicles [6]. Randomly locating strain gages in a bridge would

not provide the necessary information to determine bridge serviceability. Installing

the strain gages can be a difficult task, especially if access to the critical members

that need to be measured is limited. A final passive method, known as fatigue fuses,

are also used.

Fatigue fuses are metal legs that are designed to break off after a specific amount

of full-load cycles are experienced in a steel bridge [7] [8]. Typically, they are set up

with four legs, each one breaking at different full-load cycles. These are both easily

and quickly implemented. They can help users know when a stress or bridge lifetime

analysis is required, saving time and money. However, various conditions such as over-

weight vehicles or handling accidents, may cause premature breakdown. This leads

to the motivation behind the use of accelerometers for mobile bridge applications.
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funded by the Small Business Research Initiative (SBIR) to actively monitor vehicle

passes.

Accelerometers have been used extensively in many applications in civil engineer-

ing such as earthquake research [9] and real-time hybrid simulation [10]. They are

expected to sustain rough weather and handling, last longer, and maintain the re-

quired accuracy, as compared to strain gages. It has been found that strain gages

may not perform well in long term harsh settings [11]. Accelerometers can provide

the active monitoring the REB needs.

The approach is based on the premise is that each vehicle crossing produces a

distinguishable acceleration response. Simulations and experiments are conducted to

test and validate this premise. A feature detection algorithm, based on the image

processing procedures of Viola-Jones [12] [13], is applied to acceleration spectrograms

to classify vehicles crossing a bridge. Spectrograms are used to obtain visual repre-

sentations of accelerations. Once sufficient spectrograms are generated to create a

training database, new vehicles can cross mobile bridges and be classified. However,

to acquire a reliable detection rate, a sensitivity study is conducted to examine the

influence of certain parameters.

1.2 Problem Statement

The REB needs an active monitoring solution to classify vehicles and maintain a

reliable histogram representing usage. Determining what type of vehicles have crossed

can help calculate the number of vehicle passes remaining before a repair or retrofit

is required. Therefore, the influence of various parameters are studied in numerical

and experimental tests to understand how to best implement the method to yield

the required accuracies. These tests and recommendations are intended for mobile

bridges with a broad range of parameters and not intended for permanent bridges.

The parameters studied in the numerical investigation, section 4, are: bridge

length, vehicle speed, noise and sensor filtering. Soil conditions are tested experimen-
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tally in section 5. The purpose of this thesis is to study the sensitivity of the vehicle

detection algorithm to the aforementioned parameters and develop an implementation

recommendation for the REB to garner reliable detection rates.
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2. LITERATURE REVIEW

Engineers always strive to understand the behavior of structures to the best of their

ability. In the field, they use sensors to study structure behaviors or measure spe-

cific data, like the weight of a vehicle using WIM. The Viola-Jones object detection

framework, which was developed for objects and images, can be adapted to acceler-

ation spectrograms. This provides new opportunities for use with sensors to study

structural behavior. When it is not practical to conduct real world experiments,

finite element models are used to represent the behavior of a structure. All these

concepts are reviewed in this chapter to understand past successes and what needs

to be improved or created.

2.1 Weigh-in-Motion

In transportation, the need to estimate truck weight and monitor road and bridge

use has been heavily studied. The different state departments of transportation

throughout the United States use and recommend various measuring tools such as:

WIM, strain gages, static scales, radio communication, among others [14]. These

tools provide quantitative information on vehicle traffic that greatly improves bridge

lifetime estimate and reduces uncertainty [15].

WIM systems have been extensively used by federal and state highway agencies.

Best practices and handbooks have been published by various authors [16] [17]. Some

of their main purposes are to relieve static scale traffic, reduce truck and users trans-

portation times, and most importantly, to protect the transportation infrastructure

by detecting and removing overweight vehicles from roadways. Many companies of-

fer commercially available WIM systems that are either permanent or temporary for

roads and bridges [18] [19].
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WIM systems have been found to have errors as high as 20%, and ground static

scale systems allow 0.1% error rate for certifiable weighting [4] [5]. For these reasons,

step 7 in Table 2.1 has yet to be replaced, and static scales are still the most precise

and necessary component in weight enforcement. To increase the WIM’s effectiveness,

additional sensors and a more robust algorithm is required, which requires additional

computational power.

Various studies have been conducted for both high speed and slow speed WIM

systems to improve the algorithm’s reliability and reduce errors in the results. Most

WIM overweight detection algorithms are based on a fixed threshold methodology,

where a vehicle gets flagged if its GVW exceeds the threshold. However, if GVW

follows a normally distributed probability, then slightly overweight vehicles have a

50% chance of passing undetected [5]. As a result, if the threshold is set to 60 kips,

then a 61 kips GVW can pass undetected half of the time.

An adaptive threshold algorithm has been developed to increase overweight vehicle

capture and reduce static scale closures [5]. Static scales in roads suspend operations

if the number of vehicles in line to get weigh is too large and prevents access. In this

method, the threshold to detect overweight vehicles is increased as the static scale line

grows, preventing closure. For example, if a static scale has a capacity of 20 trucks

in line, the WIM initial threshold of 60 kips can be increased to 70 kips when there

are 10 trucks in line. Thus, the increase in the threshold reduces misclassification of

legal trucks and increases the likelihood of capturing overweight vehicles. However,

this algorithm does not replace the static scale, although it does reduce vehicle travel

delay somewhat.

Another study was conducted to increase the accuracy of WIM scales above static

scale provisions. This methodology could help improve vehicle flow and replace static

scales altogether. The study determined that higher mode oscillations produced when

vehicles crossed the bending plate were not relevant for weight calculations because

they decrease the accuracy [4]. Thus, a method was proposed to reduce non-relevant

vehicle oscillations to provide certifiable weight results [4]. However, it only works at
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slow speeds below 8 kilometers per hour (km/hr) and needs some additional compu-

tational power. Despite improving the movement along the static scales, the speed

is too slow and still requires vehicles to deviate from the main road to get approved

weight measurements.

The WIM scales have proven to be effective under a specific range of operations.

However, its decreased accuracy, heavy computational needs, lack of certifiable weigh-

ing, and need to physically change the bridge makes it impractical for mobile bridge

applications.

2.2 Finite Element Models

Mobile bridges are emplaced in a variety of locations with different boundary

conditions. Physical testing of all parameters is cost prohibitive and impractical.

However, the bridge can be idealized as a simply supported beam and analyzed using

the finite element method. This provides an excellent alternative to represent the

behavior of members or structures at a fraction of the cost of the real world experi-

ments. Various methodologies outlined by Chopra [20] and Craig [21] explain how to

apply the finite element method.

Silva considered an assortment of beam finite element models under different

boundary conditions [22]. He developed a method to update the model to better

represent the vibrating behavior of a bridge. The method consists of comparing the

model’s mode shapes and frequencies to those of the real structure. The model pa-

rameters are changed until the mode shapes and frequencies of the real structure are

replicated. The final updated model is then dynamically similar to that of the real

structure. Thus, various load cases and scenarios can be investigated to understand

the member’s behavior without performing real world experiments.
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2.3 Feature Detection Method

Human beings are able to differentiate other people’s faces thanks to various

distinct characteristics each person possesses. These distinguishable features may

be the shape of their head, eyes, mouth, nose, ears, among others. As the reader

might have experienced, certain people are easier to remember than others due to

their distinct features such as moles, hair, skin complexion, birth marks, and scars.

The more prominent features a person possesses, the easier it will be for people to

remember them. This general concept is actively studied and implemented in the

field of computer vision.

2.3.1 Computer Vision

Computer vision presents different methods to acquire, process and analyze images

numerically [23] [24]. The applications are endless and can be implemented to any

visual representation, in two or three dimensions. A wide variety of applications

include: navigation, object detection and retrieval, and measuring distances [23] [24].

Computer vision tends to use the pixels in an image, which are homogeneously shaded

squares [23], to compose the numerical values that can be obtained.

Various researchers have used these principles to create and improve algorithms

that can detect and remember images. They use it to either find a person in a

group or classify them as required. In this thesis, the Viola-Jones object detection

framework [12] and rapid identification of images [13] are of special interest.

2.3.2 Viola-Jones Object Detection

Introduced in 2001 [12] and revised in 2004 [13], Viola and Jones presented a quick

feature-based object detection system that was 15 times faster than any previous work

and yielded very high detection rates. Its success was only limited to aspects such

as: lighting, angle, scale, and pose. Even though one might think that with better
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resolution comes better results, that is not always true, especially for this framework.

Viola-Jones were able to obtain high frame rates with information presented in a gray

scale image [12], with detection rates as high as 93%. These high detection rates were

obtained as a result of implementing key concepts such as integral image and the

boosting learning algorithm.

The integral image computation is the key aspect behind the quickness and ef-

fectiveness of the method, as it will be explained in section 3.2.2. When an image

is loaded to the algorithm, it is converted to gray scale and its shaded pixels are

computed to obtain values for the areas and corners. These values are then extracted

using Haar-like features, which aid in determining the strong features. The quick

extraction and computation of strong features is possible because of the work done

beforehand. Without the integral image, pixel values would have to be calculated for

each Haar-like feature after extraction, increasing computational requirements.

Haar-like features are simple rectangular features as compared to steerable filters

[13]. Steerable filters adaptively changes filter orientation to determine a specific

output such as texture or edges, based on pixels [25]. Pixel based systems can perform

detailed analysis of complex images thus, requiring more computational power [13].

However, Haar-like features can provide good image representation that operates

much faster than a pixel based system [12]. Additionally, they provided enough

resolution to accurately detect individuals in the study, at a fraction of the speed.

Thus, if Haar-like features are suitable for face detection, they can be used in simpler

images such as spectrograms.

Boosting is a learning algorithm that produces strong classifiers from various weak

classifiers, as it will be explained in section 3.2.2. A strong classifier is composed of

the sum of weak classifiers, and a weak classifier is composed of strong features found

in an image, extracted by the Haar-like features. Viola and Jones used the AdaBoost

learning algorithm, due to its simple efficiency of creating classifiers [13]. Their work

aggressively removes unnecessary weak features and highlights strong critical features

for detection, based on the Freund and Schapire methodology [26]. The algorithm
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focuses on using as much distinct weak features as required by the user to create the

strong classifier. These iteration produces robust strong classifiers to classify images.

The Viola-Jones object detection framework has inspired multiple innovations

and research in the computer vision field. The quickness and effectiveness without

much computational requirements appeals to researchers. An implementation study

in bridge structures is being conducted to detect damage using images [27].

Yeum is using the Viola-Jones methodology to detect cracks near bolts using

pictures from different angles, processed through various methods [27]. Utilizing

Haar-like features, images of bolts with and without cracking, from various angles and

lighting conditions, were used to create the training classifiers through the gentle boost

learning algorithm. When tested from various angles and filters, crack conditions were

detected 98% of the time. The successful implementation generates the possibility

for automated visual bridge inspections using only images [27].

Visual inspection of bridges is limited by accessibility, environment, and the size

of the damage. Using Viola-Jones methodology removes the subjective human effect

and provides reliable results and access to areas that were impossible to reach be-

fore. The successful implementation of the Viola-Jones methodology shows promising

applications in other vision based detection or classification problems.
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3. BACKGROUND AND METHODOLOGY

This chapter summarizes the creation and use of the finite element model and the

feature detection algorithm.

3.1 Finite Element Model

Finite element models are intended to model real world behavior. Computer

programs such as MATLAB, Abaqus, and SAP 2000 can be used to develop such

model. The finite element model for this study is developed in MATLAB [28] and

follows the procedure outlined by Silva [22]. It simulates the special case of a vehicle

crossing a bridge and provides acceleration response at different locations.

3.1.1 Assumptions, parameters, and Limitations

The finite element model provides a representation of the bridge response when

vehicles cross. It is created here to provide a testbed to evaluate the feature detection

algorithm performance, which parameter variations affect performance the most, and

how to improve the results. As with every numerical model, assumptions are needed

to conduct simulations, shown in Table 3.1.

Although the REB is a non-homogeneous bridge, a homogeneous beam model is

used here to generate a representative set of behaviors and results. The simulation

is used to model a vehicle crossing a general mobile bridge and not to recreate the

REB response. Similar dynamic properties are used in the beam model to represent

the REB.

The following beam properties are inputs to the simulations: cross sectional area,

modulus of elasticity, moment of inertia, specific weight, and bridge length. Ad-
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Table 3.1.
Finite element model assumptions

Number Assumption

1 Bridge is modeled as a homogeneous simply supported beam

2 Soil conditions cannot be varied

3 Bridge length can be varied

4 Vehicle axle loads are represented as moving point loads

5 Each node provides acceleration responses

6 Vehicle speed is constant while crossing the beam

ditional simulation parameters can be varied such as: vehicle load and speed, and

acceleration response noise. The numerical algorithm created follows the steps shown

in Table 3.2.

Table 3.2.
Finite element model steps

Step Description

1 Bridge properties, number of elements, and parameters are selected

2 Mass and stiffness matrix computed

3 Apply static condensation

4 Modal damping computed

5 State-space system model created

6 Input vehicle load with desired speed

7 Linear simulations computed

8 Acceleration responses are obtained

In this study, our interest lies in focusing on the vertical acceleration. Each ac-

celeration response result is obtained using outputs co-located with the nodes of the
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3.1.2 Mass, Stiffness and Damping Matrix

To calculate the mass and stiffness matrices, the degrees of freedom (DOF) at

each node have been idealized as vertical displacement i and rotation j [20] [22].

Using the principal of virtual displacements [20], the stiffness influence coefficient kij

is estimated as

kij =

∫ Le

0

EI(x)ψ′′
i (x)ψ

′′
j (x)dx (3.2)

where Le is the length of the element or L/elements, E is the modulus of elasticity,

I is the moment of inertia, and ψ is the assumed deflective shape. ψi is selected as

sin(kxπ/L), where L is the length of the bridge and k is the modeshape. The stiffness

of each element, ke can be expressed as [20] [22]

[ke] =
8EI

L3
e

⎛
⎜⎜⎜⎜⎜⎜⎝

12 3Le −12 3Le

3Le L2
e −3Le L2

e/2

−12 −3Le −12 −3Le

3Le L2
e −3Le L2

e/2

⎞
⎟⎟⎟⎟⎟⎟⎠

(3.3)

Similarly, the mass influence coefficient mij is estimated as

mij =

∫ Le

0

m(x)ψi(x)ψj(x)dx (3.4)

The mass of each element, me is expressed as [20] [22]

[me] =
mLe

420

⎛
⎜⎜⎜⎜⎜⎜⎝

156 22Le 54 −13Le

22Le 4L2
e 13Le −3L2

e

54 13Le 156 −22Le

−13Le −3L2
e −22Le 4L2

e

⎞
⎟⎟⎟⎟⎟⎟⎠

(3.5)

The element stiffness and mass matrices are calculated using local DOF. They

are then converted to the global mass and stiffness matrices, [mglobal] and [kglobal],

using transformation matrices, [A]. Equation 3.6 shows how the conversion occurs to

obtain the global matrices.
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AT
elem1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0

0 0 1 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

1 0 0 0

0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

AT
elem2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0

1 0 0 0

0 0 0 0

0 0 0 1

0 1 0 0

0 0 0 0

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

AT
elem3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0

0 0 1 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

1 0 0 0

0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.7)

Continuing the example, each [mglobal] and [kglobal] analytically obtained is an 8x8

matrix. Since it is assumed that soil conditions do not vary and the beam is simply

supported, the boundary conditions are applied. Thus, DOF 1, 4, 7, and 8 are set

to zero, leaving the 4x4 [Mglobal] and [Kglobal] matrix with DOF 2, 3, 5, and 6. To

further simplify the problem, static condensation is applied.

Static condensation removes the rotational DOF’s, assuming they are massless

[20]. The 4x4 [Mglobal] and [Kglobal] matrices can be subdivided into multiple 2x2

matrices as follows

[Mglobal] =

⎛
⎝[maa] [ma0]

[m0a] [m00]

⎞
⎠ or [Kglobal] =

⎛
⎝[kaa] [ka0]

[k0a] [k00]

⎞
⎠ (3.8)

Thus, DOF 5 and 6 are removed from consideration by applying the following

equation

[maa]ü+ [kaa]u+ [ka0]u0 = p(t) (3.9)

and

[k0a]u+ [k00]u0 = 0 (3.10)

where u0 are the DOF without mass.

u0 = −[k−1
00 ][k0a]u (3.11)
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Substituting, the final condensed stiffness matrix is

[Mfinal] = [maa]− [mT
0a][m

−1
00 ][m0a] (3.12)

and similarly, the final condensed mass matrix is

[Kfinal] = [kaa]− [kT0a][k
−1
00 ][k0a] (3.13)

The resulting [MFinal] and [KFinal] correspond to only vertical DOF’s, simplifying

the calculations. For Figure 3.2, these results produce a simpler 2x2 mass and stiffness

matrix. MATLAB [28] is used to perform matrix operations quicker. For our 12

element model, the final mass and stiffness matrices yields 11x11 matrices. With the

[MFinal] and [KFinal], the damping can be computed.

Various methods can be used to compute the damping matrix such as Rayleigh,

Caughey and modal. Under the assumption that a mobile bridge has similar damping

throughout [21], modal damping is used because a chosen damping ratio can be en-

forced for each mode instead of just a few. Following known procedures for calculating

modal damping [20] [21], [CFinal] is computed as

[CFinal] = [MFinal](
N∑

n=1

2ζωn

Mn

φnφ
T
n )[MFinal] (3.14)

where ζn is the nth mode damping ratio, ωn is the frequency of the nth modeshape,

andMn is the diagonalized modal mass matrix. In this model, a damping ratio of 2%

is applied, assuming a working stress level or a welded steel structure [20]. With the

final mass, stiffness, and damping matrices, the equation of motion (3.1) is written

as

MFinalü+ CFinalu̇+KFinalu = P (t) (3.15)

Next, this equation is put in state-space form for simulation.
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3.1.3 State Space

State-space is a commonly used approach to write higher order equations of motion

as multiple first order differential equations [21]. Therefore, equation 3.15 is converted

to a first order differential equation by assuming the following [29]:

z =

⎛
⎝u
u̇

⎞
⎠ where z1 = u and z2 = u̇ = ż1 (3.16)

The second order differential equation is rewritten as a first order by substituting

z1 and z2

MFinalż2 + CFinalz2 +KFinalz1 = P (t) (3.17)

and then solving for the differential terms as

ü = ż2 = [M−1
final]P (t)− [M−1

final][Cfinal]z2 − [M−1
final][Kfinal]z1 (3.18)

These equation are then expressed in standard state-space form, with a state and

output equation [29].

State Equation : ż = [A]z + [B]P (t) (3.19)

Output Equation : u = [C]z + [D]P (t) (3.20)

where,

A =

⎛
⎝ 0NxN INxN

−M−1
FinalKFinal −M−1

FinalCFinal

⎞
⎠ and B =

⎛
⎝ 0NxN

−M−1
Final

⎞
⎠ (3.21)

and,

C =

⎛
⎜⎜⎜⎝

INxN 0MxN

0NxN INxN

−M−1
FinalKFinal −M−1

FinalCFinal

⎞
⎟⎟⎟⎠ and D =

⎛
⎝ 0NxN

−M−1
Final

⎞
⎠ (3.22)
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3.1.5 System Simulation

A linear simulation of the dynamic system created is performed using MATLAB.

Figure 3.7 shows a representative mid-span acceleration response of the simulation.

The simulation is performed for the time that the vehicle is on the bridge.

Fig. 3.7. Mid-span response of a 13 meter bridge due to MLC40
crossing at 15 km/hr

Once the response is obtained, it is then converted to a spectrogram, as explained

in section 3.2.1. However, before conversion, noise is added when the analysis is

considering noise in the sensors.



www.manaraa.com



www.manaraa.com

28

3.2 Feature Detection Algorithm

Various computer vision algorithms have been developed to accurately identify a

person or an object using the Viola-Jones object detection framework [12] [13] [30]. In

this algorithm, computer vision principles are being applied to spectrograms, which

are time-frequency visual representations of acceleration responses. Table 3.3 shows

the algorithm that is used and the details of the procedure followed here.

Table 3.3.
Feature detection algorithm steps

Step Description

1 Acceleration response is obtained

2 Accelerations converted to spectrograms

3 Integral images calculated

4 Haar features extracted from spectrograms

5 Gentle boost learning algorithm obtains strong classifiers

6 Classifiers are computed and stored

7 New vehicles cross and steps 1-5 are repeated

8 New vehicles are classified using the training classifiers and stored

3.2.1 Spectrograms

Spectrograms provide a visual representation of an acceleration response once a

vehicle crosses a bridge. This allows the extraction of distinguishable features for

classification. In the proposed procedure, the acceleration data is expected to begin

when a vehicle enters the bridge and to stop when the vehicle exits, using strictly the

response of the bridge while a vehicle is crossing. Thus, in the numerical investiga-

tions, the simulation response is restricted to the time while a vehicle is crossing the
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bridge. However, in the experimental section, cropping had to be addressed to ensure

the data is representative to the expected REB application.

Cropping and spectrogram creation are addressed in three steps. Step 1 is to

acquire vertical acceleration signals from sensor nodes when the vehicle is traversing

a mobile bridge. All sensors are triggered simultaneously when a vehicle enters the

bridge. There are a number of techniques available to detect true event signals and

differentiate them from noise, such as a STA/LTA (short term average/long term av-

erage) ratio method or threshold triggering [31]. The basic idea behind such methods

is to capture sudden amplitude changes (increase/decrease) or fluctuations. These

large changes/fluctuations do not typically occur in noise. In general, a vehicle entry

event produces large accelerations similar to an impact load and the change can easily

be distinguished. Thus, such methods are effective and applicable for our purpose.

Step 2 is to estimate the time at which the vehicle exits the bridge. The accel-

eration record to be used for classification should only contain data acquired when

a vehicle is traversing the bridge. In general, the triggering algorithms used in step

1 can be applied in reverse to stop (exit triggering) recording data in the sensors.

However, if the sudden exit of a vehicle acts as a large impact (releasing) force on

the bridge and produce transient vibration, it would be difficult to estimate the time

a vehicle exits using a simple amplitude-based threshold triggering method. Figure

3.9(a) presents a typical signal acquired in step 1 collected from the laboratory scaled

experiment in Section 5.2. Unlike the sudden jump at the entrance of the vehicle, the

response gently decreases at the exit.

To address this issue, we use the fact that the transient vibration is determined by

the bridges dynamic characteristics, which are mainly composed of low frequencies. A

high-pass filter is implemented to filter out the transient vibration of the bridge and

retain the high-frequency components induced by vehicle crossing and noise. This

process enhances the transition from a valid signal (the vehicle is on the bridge) to

noise (the vehicle has exited the bridge) by reducing the free vibration of the bridge

due to an impact load resulting from a vehicle exit. With this filter in place, the
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triggering methods used in step 1 are applied to the filtered signals in reverse order to

identify the exit time. In this study, a threshold triggering method is used to identify

the exit time, and its threshold is estimated based on the background noise floor,

which is measured with ambient conditions. In the threshold computation, the noise

signals are assumed to follow Gaussian distribution with a zero mean and standard

deviation of σ, the threshold limits are set to plus or minus μσ, where μ is a scaling

factor and typically set to above 3.

Figure 3.9(b) represents the signal in Figure 3.9(a) after a high-pass filter has been

applied. The boundary between the valid signal and noise is much clearer than in the

record in Figure 3.9(a). The red dotted line denotes the estimated exit time using

this reversed threshold triggering method. Note that the filtered signal is only used

for determination of the exit time and cropping the original signal.

(a) Raw signal in step 1

(b) Applying a high-pass filter for estimating vehicle exit time in step

2

Fig. 3.9. Acceleration cropping procedure (from [30])
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The final step 3 is to transform the valid acceleration signals obtained using the

entrance and exit times into spectrogram images normalized in size and scale. All

images have the same number of points in the x (time) and y (frequency) axis, and

a same spectral lines and frequency resolution. Suppose that all original signals are

measured with the same sampling frequency using the sensors installed on the bridge.

The sampling frequency should be determined based on the frequency bandwidth of

interest. For simplicity, the number of time points in the spectrogram images is set to

be higher than the maximum expected number of time points. This approach is used

because down sampling will result in aliasing. Applying a low-pass filter in advance

to prevent aliasing is not applicable in this case because a low-pass filter changes the

frequency content in the signal and thus changes the spectrogram, making it difficult

to compare the features in the spectrogram for classification. Note that the time

resolution of the spectrogram image is also varied depending on the overlap of the

Fast Fourier transform (FFT) frame. In this study, the FFT frame moves forward one

time point at a time, and it produces same number of time points with time signals.

Spectrograms are computed from original signals with the same number of points

in the FFT and two different sizes of frames. The frame lengths of the short-time

Fourier transform for spectrogram conversion vary by resolution in both time and

frequency. Good resolution cannot be achieved in both time and frequency with

only one frame size. Thus, in this study, the spectrogram image is constructed with

two spectrogram transformations using two different sizes of frames, and extracting

features from appropriate time and frequency resolutions, respectively. Features used

for classification will be extracted from both images, as discussed in the section 3.2.2.

The spectrograms generated from all original signals have the same frequency val-

ues along the y axis, but are not still consistent along the time axis due to variations

in the speed. To correct this inconsistency, all spectrogram images are resized to have

the same number of points along the x (time) axis. Figure 3.10 presents spectrogram

images generated with the signal in Figure 3.9(a) after extracting the valid accelera-

tion record. Each portion of the combined image has either better time or frequency
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resolution depending on frame size used for spectrogram. Each portion of the image

has been normalized here for visual clarity in this explanation.

Fig. 3.10. Small and large frame window spectrograms

Now that the spectrograms are created, the main algorithm framework is used.

3.2.2 Viola-Jones Algorithm Framework

The Viola-Jones algorithm applied can be summarized in three steps: computation

of integral image, extraction of Haar features, and application of the gentle boost

learning algorithm. These steps are performed for both the training and testing

phase.

Integral image is a step commonly utilized to compute an image’s shaded pixel

values fast without requiring major computational power [23]. It permits the evalua-

tion of features quickly [12] when the Haar-like features are extracted from the image.

Figure 3.11 shows a representation of how the integral image is computed, influenced

by [32], where the value at a specific pixel is the sum of the pixels above and to the

left of it.

Haar-like features are a set of clear and dark rectangles that are used to find strong

features in an image [32]. Since the spectrograms produced do not have complex

features, six types of simple rectangular Haar-like features suffice [12] [30], as shown

in Figure 3.12.
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For classification problems, one versus rest (OvR) and one versus one (OvO) can

be applied. In this study, OvO is adopted because it heuristically provides better

classification outcomes, as recommended by Yeum [30].

These classifiers can be trained individually or correlated. Individual training is

used in the numerical investigation, section 4, because only one acceleration response

per crossing is obtained for training. Correlated training occurs in the experimental

validation, section 5, because multiple accelerometers are used and there is a rela-

tionship between the responses. Once the algorithm is applied, results obtained are

discussed in the form of a confusion matrix.

3.2.3 Confusion Matrix

The confusion matrix is commonly used to demonstrate the results of supervised

learning algorithms [35]. As shown in figure 3.15, the rows refer to the actual class

while the column refers to the predicted class. If both the actual and predicted class

match, it is considered to be a perfect classification. If they do not match, then it

is seen how the actual class was misclassified by reading the predicted class. For

example, it can be seen that Class 4 was misclassified as Class 3 two times.

Fig. 3.15. Confusion matrix results example
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Confusion matrices allow for rapid assessment of misclassification occurs and the

overall performance of the method. It provides insights into similar strong features

pattern across classes.

3.3 Summary

This background chapter provides an explanation of the procedures used to de-

velop a finite element model that provides acceleration results, and a description of

how the acceleration results from both the finite element model and experimental

results are converted to spectrograms and taken through the feature detection algo-

rithm. Results will be summarized in confusion matrix form for analysis.
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4. NUMERICAL INVESTIGATION

To assess the sensitivity of the results due to variations in parameters, a finite element

model [22] is used to obtain acceleration responses and analyze them with the feature

detection algorithm. The finite element model creation is explained in section 3.1.

Numerical experiments provide a thorough study of various parameters at little to no

cost. It also provides guidance in how to properly conduct field experiments.

4.1 Simulation Explanation

The simulation code is built so the user can vary the following parameters: bridge

length, vehicle speed, noise, vehicle loading, sensor filter and material properties. In

all cases, the material properties are kept constant, as recommended by Silva [22].

The bridge is modeled as a simply supported homogeneous beam, as it closely mirrors

the real world emplacement guidelines [7].

The model is developed to have similar dynamic characteristics to the REB. As

explained by Silva [22], steps are followed to reach dynamic behavior equivalence.

First, a finite element model is defined with specific material properties. Second, a

modal analysis of the REB is conducted to determine the natural frequencies of the

bridge for the first three modes. Third, the inertia and stiffness parameters of the

numerical model are updated until the frequencies closely match the ones obtained

in the REB. Finally, the material properties are set and the numerical model can be

applied to various parameters and loading conditions.

Acceleration responses can be obtained at any specific location and are generated

at a sampling frequency of 1024 Hertz. However, the mid-span acceleration is the

only response used for all training and testing, closely matching the actual procedure

intended by the user. Once the response is obtained, it is passed through a filter with
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a cut-off frequency of 60 Hertz and re-sampled to a data rate of 120 Hertz. This same

procedure will later be conducted in the field experiments described in section 5.

The bridge should be examined under a variety of setups and conditions, which

can be cost prohibitive for field experimentation. Therefore, the following numerical

study provides the results to guide future experimental studies and to develop a

general bridge procedure. The end goal is to determine which parameter changes

yield more variation in the results and how to develop an implementation procedure.

The following simulations will consider different variations in sensor filter, bridge

length, speed and noise at different levels. These parameters are key to understanding

the capabilities of the algorithm and how to use if effectively with successful outcomes.

4.2 Vehicle Loadings and Classes

The vehicles used for the simulation are the hypothetical MLC. The MLC were cre-

ated by the military in order to correlate all types of vehicles, tracked and wheeled,

into one common type and also determine the maximum class a bridge can sup-

port [36]. For example, an MLC 4 is a vehicle of approximately four short-tons, or

3,628 kilograms. Existing guidance, outlined in the Engineer Reconnaissance Field

Manual [37], can convert any existing vehicle into an MLC. Some common vehicle

classifications are shown in Table 4.1.

Table 4.1.
MLC vehicles (from [37])

MLC Vehicle

4 High Mobility Multipurpose Wheeled Vehicle (HMMWV)

12 Backhoe

20 Mine Resistant Armored Protected (MRAP) Truck

40 D7G Mine Clearing Bulldozer with armor

50 M870 semi trailer
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Table 4.2.
MLC individual and group indices

Actual MLC Individual Index Group Index

4 1 1

8 2 1

12 3 2

16 4 2

20 5 2

24 6 2

30 7 2

40 8 3

50 9 3

4.3 Sensitivity Study

The sensitivity study is intended to determine how to implement the algorithm

and design the training to improve the accuracy of the feature detection algorithm

under varying parameters. Sensitivity refers to the degree that the algorithm results

are affected by parameter variation. The goal is to increase the accuracy for both

individual and group indexes to a rate above 90 percent.

The following simulation numbers are implemented for all cases studied: 100 sim-

ulations per individual MLC, 75 for training and 25 for testing, for a total of 900

simulations, 675 training and 225 testing. All studies are divided into four general

cases. Cases 1 and 2 reflect the perfect laboratory scenarios, where the training and

testing occur at identical noise level. Cases 3 and 4 present the more realistic scenar-

ios, where the noise level differ for training and testing. For all cases, an additional

letter will be added to the end of the case number to explain which parameter is
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studied. For example, Case 1F refers to Case 1 for the filter parameter. For cases in

this study, F means filter, L means length, S means speed and N means noise.

4.3.1 Accelerometer filter

The accelerometer currently expected to be available by the user allows a low pass

filter setting of either quarter or half data rate. This setting can help capture the

distinct features that are created when vehicles cross. This is especially important

due its low sampling frequency of 120 Hertz. To determine the best setting among

these options, three filtering variations are studied in this section: none, quarter data

rate, and half data rate.

For all simulations, the length of the bridge will be random, and is uniformly

distributed from 8 to 12 meters, speed is set to 15 km/hr and vehicle load varies

less than 5%. A total of 60 simulations are conducted, 20 per filter setting. It is

assumed that the user will not change the filter setting between training and testing

environments, as it will present additional calibration and time issues. The four cases

studied are summarized below:

Case 1F Training and testing without noise

Case 2F Training with 5% noise and testing without additional noise

Case 3F Training without noise and testing with 5% to 40% additional noise

Case 4F Training with 5% noise and testing with 5% to 40% additional noise

Group index detection results are very similar, regardless of the filtering level. 98%

detection rate is achieved in case 1F and 100% in cases 2F, 3F, and 4F. The algorithm

is not sensitive to the filtering level when group indexes are used. Individual indices

shed light into what filter level is better.

In individual MLC detection, the training and testing data for all 60 cases demon-

strated that no filter provides the worst accuracy. Therefore, it will not be considered
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4.3.2 Length variation

The REB can be placed over any span up to a maximum length of 13 meters [7].

In real world applications, span variations affect bridge properties and behavior. It is

important to study how the difference between short and long span responses as well

as the range of lengths in the training database affect results. Figure 4.3 demonstrates

the challenge of visually comparing the same MLC crossing at different lengths. It is

evident that they are quite different.

(a) 3 meter response

(b) 12 meter response

Fig. 4.3. MLC 40 acceleration responses at different lengths
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In this parameter study, bridge length will be random and uniformly distributed

from 2 to 13 meters, for all possible integer range combinations, including fixed

lengths. Fixed lengths refers to using only one specified bridge length. Some combi-

nations of the possible 78 are: 6 to 10, 2 to 13, and a fixed length of 10 meters. The

following parameters remain constant throughout the study: vehicle load varies less

than 5% and speed is set to 15 km/hr. Below are the four cases that are examined:

Case 1L Training and testing without noise

Case 2L Training with 5% noise and testing without additional noise

Case 3L Training without noise and testing with 10% additional noise

Case 4L Training with 5% noise and testing with 10% additional noise

Individual index results demonstrate that the detection rate increases as the length

range gets smaller and closer to a fixed length, regardless of the case applied. This

means that the worst rate classification results occur at the extremes, from 2 to 13

meters, while the best occur at fixed lengths. Figure 4.4(a), (b), and (c) shows how

the smaller range produces better results for cases 3L and 4L. The detection rate on

the ending length axis (x-axis) refer to the ending range. For example, Figure 4.4(b)

case 3L shows a detection rate of approximately 60% at ending length 9 meters. This

means that the bridge length range was selected at random by uniform distribution

from 6 to 9 meters.

For individual index fixed length results, Figure 4.3(b) shows case 4L detection

rate increased by an average 23% over case 3L, achieving a near perfect classification

in the simulations. This demonstrates that noise training produces consistently better

results when additional noise is added for testing. This scenario is closer to the field

application, where the noise cannot be perfectly replicated in training and the testing

noise is higher.

The best results occur when group indices are applied. Group index results demon-

strate, for lengths 4 meters and above, that the detection rate increases as the length
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Table 4.3.
Detection rate at short spans (less than 4 meters)

Case Fixed Length Individual Rate Group Rate

3L 2 meters 25% 63%

3L 3 meters 33% 74%

4L 2 meters 32% 66%

4L 3 meters 33% 73%

distinct features as Figure 4.3(b), which leads to misclassification due to the limited

number of unique features across classes.

The limitations imposed on the sensor sampling frequency make it difficult to

accurately detect individual vehicles in short spans of 2 and 3 meters. Increasing the

sampling frequency of the sensors may address this issue, but it should be further

studied on future experiments. Within current guidelines, use of the group index

provides a superior detection rate and can help offset the results sensitivity.

Despite having good results for individual indexes in fixed lengths 4 meters or

above, it is infeasible to garner all possible length variations and ranges. Therefore,

small length ranges should be considered for implementation. For example, if the

training database has response data for integers between 3 and 13 meters, but the

test occurs at 10.5 meters, then it will try to match to either 10 or 11 meters. Even

though the response relationship is not linear, the detection probabilities increase at

smaller ranges. In this type of case, the algorithm works best for cases 3L and 4L.

Remarks: This study highlighted what range of lengths are acceptable to accurately

detect the right class of vehicle for both indexes. To acquire over 90% detection

rate: training should be conducted with noise, group index provide overall best

results, and length range should be as small as possible or known.
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4.3.3 Speed Variation

The REB can be crossed at speeds up to 40 km/hr [7], but are typically crossed

at 15 km/hr when ground guides are present. Speed is difficult to control in field

applications, which may hinder accurate classification. Figure 4.5 shows an example

of how the spectrogram varies when only the value of the constant speed is changed. It

is visually evident that despite having distinct features at similar frequencies, certain

features get stronger at higher speeds and this makes it difficult to compare them.

(a) 10km/hr Crossing

(b) 20km/hr Crossing

Fig. 4.5. MLC 40 acceleration responses at different speeds
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The following parameters remain constant for this study: vehicle load varies less

than 5% and length is fixed at integers from 2 to 13 meters. Speed variation will be

random and normally distributed with a mean of 15km/hr and a σ of 3, 2, 1 and 1/2.

Once the vehicle enters the bridge, the speed is assumed constant throughout, as the

REB manual states that there should be no sudden acceleration during crossing [7].

12 possible constant lengths and four speed variations are considered, for a total of

48 simulations. Below are the specific cases that will be considered:

Case 1S Training and testing without noise

Case 2S Training with 5% noise and testing without additional noise

Case 3S Training without noise and testing with 10% additional noise

Case 4S Training with 5% noise and testing with 10% additional noise

For both indices, the results generally show an increase in detection as σ decreases.

The short span lengths, 2 and 3 meters, continue to yield lower detection rates, for

reasons explained in section 4.3.2. Figure 4.6 shows the summary of results per speed

variation for cases 3S and 4S in both indeces.

Individual index results in cases 3S and 4S averaged detection rates of 67% and

69%, respectively, with better 4S results 69% of the time. However, no results showed

a rate over 90%. The best results where obtained in the groups. Group indexing

results in cases 3S and 4S had detection rates above 92% and 97%, respectively, for

lengths higher than 4 meters at all σ variations. Even at 3 meters, 3S and 4S resulted

in rates above 85% and 95%, respectively. When group indexing is applied, speed

variation up to a σ = 3 does not affect the detection rate considerably.

In field scenarios, speed will always vary from vehicle to vehicle, depending on

the driver. If the speed is controlled up to a maximum σ = 3, which provides a

range of plus or minus 5km/hr, then the detection rate will not be affected when

group indexing is applied. Speed can be controlled by ground guides or maximum

and minimum speed signs.
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(a) 5% Noise

(b) 25% Noise

Fig. 4.7. MLC 40 acceleration response with different noise added

Simulations are also conducted at an additional noise of 5%, 10%, and 25%. The

following parameters remain constant for this study: vehicle load varies less than

5%, speed is fixed at 15 km/hr, and length is fixed at integers from 3 to 13 meters.

There are 11 possible fixed lengths and 3 additional noise parameters, for a total of

33 simulations. The specific cases that will be considered are shown below:
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The group index detection rates meet the stated requirements for cases 3N and

4N, Figures 6.5(c) and 6.5(d), respectively. However, 4N has overall better results.

Additionally, case 4N obtains over 90% detection rate for an additional noise of 25%

between 5 and 11 meters, which is five times the training noise level. The better

detection rate of case 4N provides expanded capabilities to the algorithm in relation

to noise. Low detection rates are captured for the short three meter length case, for

reasons explained earlier in section 4.3.2.

Remarks: The noise parameter study highlights that when training occurs with

noise, additional noise can be tolerated and still produce a group index detection

rate above 90%. The most realistic training scenario should be applied when

collecting the training data and no additional noise scenarios are required, given

the tolerance of the algorithm to noise. Therefore, noise is considered a low

sensitivity parameter and does not present much concern, as long as the training

occurs in a representative environment and the additional noise during testing

is not too high.

4.4 Implementation Recommendations

The numerical investigations included in this chapter demonstrate that the algo-

rithm results are most sensitive, in order of impact, to: bridge length, vehicle speed,

noise, and filter. Knowing or controlling these parameters will help the user obtain

the required detection rate. Recommendations are compiled in Table 4.4 for field

implementation.

These recommendations tend to produce the best environment possible for reliable

detection rates. They serve as a starting point for a future thorough study of the REB,

under the various conditions stated above.
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Table 4.4.
Best Parameter Settings

Parameter Recommendation

Sensor filter Half data rate setting

Bridge length Compile integer lengths from 3 to 13 meters

Speed Control speed plus or minus 5km/hr

Noise Train with realistic field conditions

Index Group

It is important to note that the group index classification developed was based

on vehicle axle length and the limitations of the model created. The model does not

account for the dynamic interaction between the bridge and the vehicle, which occurs

in the real world. Thus, the lack of individual classification can also be attributed to

the limitation of the model.
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5. EXPERIMENTAL VALIDATION

Experimental validation is conducted to demonstrate the premise that each vehicle

class will produce a distinct acceleration response, allowing identification under the

algorithm developed. Validation is explored in two separate experiments: a full scale

mobile bridge and a laboratory scale bridge. These experiments aid in demonstrating

the initial capacity of the algorithm, provide insights in the results sensitivity to

parameters, and guide implementation recommendations.

The experiments are conducted under the following similar parameters and pro-

cedures. Data acquisition occurs at a sampling frequency of 1024 Hertz with an

accelerometer PCB model 333B40 [38]. An m+p VibPilot data acquisition system is

used with a 24-bit analog to digital converters, simultaneous sample and hold, and

built-in anti-aliasing filters linked to the sampling rate [39]. Since the algorithm is

expecting data acquired at 120 Hertz, the original response is passed through a low

pass Butterworth filter with a cut-off frequency of 60 Hertz and re-sampled to a data

rate of 120 Hertz . This reduction in data helps mirror the expected spectrograms

that will be constructed by the user. Once the acceleration data is obtained, a spec-

trogram will be created with a Hanning window of 32 and 128 frame sizes, small and

large window, respectively [30]. Then, 20,000 features are created for each spectro-

gram, where a strong classifier will be composed of 100 weak classifiers [34]. Training

and testing will occur under various conditions, depending on the experiment and the

data.

Correlation classification is applied to the experimental results because of the use

of multiple accelerometers. In the REB and scaled experiments there are 12 and 8

responses obtained, respectively. The accelerometers are located along the length

of the mobile bridges and a match of at least 75% is used for correct classification.
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Correlation is preferred to individual classification as it takes into account the response

of the mobile bridges at different locations and the relationships between them.

5.1 REB Experiment

The full scale bridge experiment is conducted on the REB. This experiment

demonstrates the use of the vehicle classification algorithm with actual acceleration

responses, illustrates the occurrence of distinct features between vehicles, and pro-

vides guidance on how to conduct the laboratory scale experiment. REB tests were

intended to be extensive but, limited amount of time was available for testing due to

reason beyond our control.

5.1.1 Setup

The bridge is set up and crossed by two vehicles under a specific set of parameters,

shown in Table 5.1. The two vehicles, a small Sport Utility Vehicle (SUV) and a small

pickup truck, Vehicles 1 and 2, respectively, produce acceleration responses that are

measured as they cross.

Table 5.1.
REB experiment parameters

Parameter Explanation

Bridge Length Approximately 13 meters

Vehicle Speed 4, 6, and 9 km/hr

Setup Wood supports on grass surface

Vehicle 1 crosses the bridge five times at each speed mentioned in Table 5.1, for 15

crossings. Vehicle 2 crosses the bridge four times at each (4 and 9 km/hr) speed, for

a total of 8 crossings. Thus, there are 23 total crossings. 12 accelerometers, six per
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side, are installed along the length of the bridge to capture each crossing acceleration

response. Figure 5.2 shows the main bridge setup with the sensor locations.

(a) Sensor locations

(b) Sensor close-up on REB top flange

(c) Isometric view (from [30])

Fig. 5.1. REB experiment setup (Courtesy of Christian Silva and Chul Min Yeum)
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related to the axle distance, weight, and dynamics of the vehicle when coupled with

the bridge.

(a) Vehicle 1 response

(b) Vehicle 2 response

Fig. 5.3. Acceleration responses for vehicles 1 and 2
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Remarks: The experiment’s success is directly related to the small number of vehi-

cles and fixed setup condition. A sufficient amount of training and data points

will yield good results. Although the results are promising and distinct re-

sponses are produced in the REB, further parameter variations must be studied

when bridge access is available such as: additional vehicles, varying axle loads

and distances, and setup variation. However, the intent of the experiment is

met, showing that vehicle crossings produce distinct response spectrograms that

can be detected and classified.

5.2 Laboratory Experiment

A scaled bridge is developed and exposed to different parameters and conditions

with relative ease. The purposes of this experiment are to: demonstrate that distinct

patterns are produced per vehicle despite setup, determine if small variation in speed

affects the algorithm, and explore the sensitivity of the results to soil variation.

5.2.1 Setup

A small ditch, with enough clearance for deflection, is created to emplace the

bridge and perform the testing. Table 5.2 shows the parameters used.

Table 5.2.
Laboratory scale bridge experiment parameters

Parameter Explanation

Length Approximately 4.4 meters

Vehicles 6 variations

Soil Gravel (B1), rubber pads (B2), and wood (B3)
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To obtain the vertical acceleration responses, eight accelerometers, four per side,

are located along the length of the bridge. Figure 5.4 shows the bridge setup and

accelerometer locations.

(a) Accelerometer locations

(b) Isometric view

Fig. 5.4. Scaled bridge with accelerometer locations

The bridge is easily moved manually to test the three different soil parameters

mentioned in Table 5.2. Once emplaced, six vehicles cross the bridge 18 times, six

times per setup condition, three times per direction. Figure 5.6 shows the vehicles

utilized.

Vehicles 1, 2, 3, and 5 are four wheel, two axle, vehicles while Vehicles 4 and 6

are two wheel vehicles, one axle and two axle, respectively. The number of vehicles,

along with wheel and axle variation, adds to the realism of field conditions. This
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(a) Vehicle 1 (b) Vehicle 2 (c) Vehicle 3

(d) Vehicle 4 (e) Vehicle 5 (f) Vehicle 6

Fig. 5.5. Vehicles used in laboratory experiment (From [30])

variation imitates the challenges of obtaining enough distinct features to individually

detect vehicles. Vehicle 1 and 2 are exactly the same and serve as a control vehicle.

To provide additional variation in test conditions, simulating realistic uncertain-

ties, the vehicles are pulled by three different persons, taking three to six seconds

to cross. The speed, although not constant, does not vary much thanks to the use

of a ground guide. This mimics the actual scenario of small speed variation and

driver variation. Speed would be easier to control on the REB by a combination of

speedometer, ground guides, and speed signs.

With eight accelerometers installed, each vehicle crossing produces eight acceler-

ation responses, 48 per soil parameter, 144 in total. Since there are six vehicles, six

crossings, and three setups, data from 108 total crossings are collected and 864 re-
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sponses are obtained. The acceleration data is captured manually and later cropped,

as explained in section 3.2.1, to the specific time span when vehicles are crossing.

Below are the specific tests that are examined:

Test A Determine soil parameter using reference vehicle

Test B Determine overall detection rate with all setups

Test C Determine detection rate with different training and testing setups

These tests are designed to determine the sensitivity of the results to soil variation,

to assess overall algorithm performance under various training and testing conditions,

and to consider the effects of vehicle response similarity and the impact of speed

variation.

5.2.2 Acceleration Results

A total of 108 crossings, 864 acceleration results, are obtained. Visual inspection of

the acceleration results obtained in the experiment, shown in Figure 5.6, demonstrate

distinguishable patterns between vehicles. Vehicle 1 and 2 responses are almost the

same, since they correspond to two vehicles with the same model number. These

patterns will help in classifying the vehicle.

5.2.3 Test A Results

This test aims to determine if a reference vehicle can be used to determine the

soil condition. Figure 5.7 shows the spectrograms of Vehicle 4 with different soil

conditions. B1 refers to gravel, B2 refers to rubber pads, and B3 refers to wood.

The impact of soil variation can be seen visually, which indicates that it is likely

that the algorithm will be able to detect the soil condition. All setups have features

between 5 and 20 Hertz, but B2 and B3 show strong features at approximately 32

and 45 Hertz, respectively.
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(a) Vehicle 1 (b) Vehicle 2

(c) Vehicle 3 (d) Vehicle 4

(e) Vehicle 5 (f) Vehicle 6

Fig. 5.6. Vehicle spectrograms produced when bridge is placed on gravel
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(a) B1 soil (Gravel) (b) B2 soil (Rubber mats)

(c) B3 soil (Wood)

Fig. 5.7. Vehicle 4 responses for 3 soil conditions

Hence, Vehicle 4 is considered the reference vehicle and is thus the only one tested,

representing the REB CBT. In the field it is likely that this vehicle would be used as a

reference vehicle. Using only Vehicle 4 data, one crossing response is used for testing

while the other 17 are used for training. There are a total of 18 rounds to account

for all possible scenarios. This simulates the database of various bridge setups that

would exist in an actual mobile bridge.

To discern which soil condition is selected, a binary decision is made between

B1 and B2, B1 and B3, and B2 and B3. For the three binary decisions, the eight

accelerations will be forced to be classified as either one of the two soil condition
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condition is determined each time the bridge is emplaced, the possible cases for subse-

quent vehicle crossings is reduced to 36 crossing responses, 288 acceleration responses.

This improves the likelihood of detecting the right vehicle by removing irrelevant cases

from consideration.

The resulting classifiers also show how alike each setup is to one another as follows:

B1 to B3, B2 to B1, and B3 to B1. This alikeness is important to note because testing

all possible soil conditions is too costly and time consuming. However, this results

indicate a few discrete cases will suffice. In section 5.2.5 the similarities found are

examined to determine how they affect the results.

Remarks: The use of a reference vehicle to reduce training required for the database,

and increase the set of possible outcomes, helps focus the detection of vehicles.

Reference vehicles can be used and implemented in the field, as they are readily

available. They do not add additional time nor steps to the current procedure

and provide insight into the behavior of the bridge. A reference vehicle, such

as the CBT, will play a supportive role in the classification scheme and it is

recommended that this approach be considered in the implementation.

5.2.4 Test B Results

This test studies the overall detection rate using all of the data obtained. Figure

5.9 shows different vehicle crossings with different soil conditions. Vehicles 1 through

6 are abbreviated as V1 through V6. Figure 5.9 sheds light into what the algorithm

aims to accomplish as it classifies the vehicles. Visually, B1 and B2 produce similar

response spectrograms while B3 produces different distinguishable patterns. As a

reminder, Vehicle 1 and 2 are the same vehicle. Vehicles 1, 2, 3, and 5 maintain their

general response characteristics across soil conditions without much variation. How-

ever, Vehicle 4 and Vehicle 6 responses vary greatly between setups. This differences

across setups is not examined in this test, but it is studied in section 5.2.5.
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(a) V1 B1 (b) V2 B1 (c) V3 B1 (d) V4 B1 (e) V5 B1 (f) V6 B1

(g) V1 B2 (h) V2 B2 (i) V3 B2 (j) V4 B2 (k) V5 B2 (l) V6 B2

(m) V1 B3 (n) V2 B3 (o) V3 B3 (p) V4 B3 (q) V5 B3 (r) V6 B3

Fig. 5.9. Vehicle spectrograms under gravel setup

Here, the vehicle classification results are examined by taking one of the 18 cross-

ings per vehicle for testing, while the remaining 17 crossings per vehicle are included

in the larger training data sets. There are six vehicles, six runs, and three setups, for

a total 108 rounds to account for all possible scenarios. Thus, each round uses 108

crossings, six for training and 102 for testing. As mentioned earlier, each crossing

produces eight acceleration responses.

To classify properly, a binary code between Vehicles 1 through 6 is created with 10

possible combinations, similar to Test A but with vehicles instead of soil conditions.

Some binary classifiers are Vehicles 1 and 3, 3 and 5, and 5 and 6. Vehicle 1 and 2

share the same binary classifiers because they are the same vehicle model. A perfect

classification outcome would provide a maximum of 32. A total of 24, 75% of perfect

classification, is defined as a satisfactory classification. If 24 is not reached, then the

vehicle is considered UC. Figure 5.10 shows the results for all the rounds in graphical

and confusion matrix form.
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This study highlights that when testing occurs with one of the three soil conditions

included in the training set, the detection rate meets the requirement. It also helps

strengthen the idea that in some vehicles, distinct patterns can be extracted amongst

different setups and small speed variation does not impact the algorithm. Despite the

good results, it is improbable that the field condition will exactly match the training

soil parameters. The difference in field and training conditions will be studied in the

following section.

5.2.5 Test C Results

This test is designed to explore the sensitivity of the results to soil variation

when the testing and training classifiers are different at each round. Figure 5.9, in

section 5.2.4, shows the impact of soil variation in the spectrograms created. Soil

variation is a key aspect to study, as the emplacement occurs at various locations,

each with boundary conditions and Soil Bearing Capacity (SBC). The manual states

that bridge emplacement can occur if the SBC is higher than 450 kN/m2 [7]. In field

applications there is not enough time for soil tests and therefore, a visual inspection

and subjective emplacement consolidation suffice to determine if a bridge is safe to

cross. This specific sensitivity study provides an understanding of how the setup may

affect the detection rate and how it can be controlled to improve results.

Here, training occurs in one soil condition and testing occurs in the other two soil

conditions. In section 5.2.3, close relationships between soil conditions are found to

be as follows: B1 to B3, B2 to B1, and B3 to B1. If the vehicle being tested has a

soil condition of B1, B2, or B3, the training classifiers to be used are only from the

soil condition B3, B1 or B1, respectively. For example, if the testing vehicle used

crossed at a soil condition B1, the training classifiers used are those created from B3

crossings. This difference closely matches field scenarios and provides guidance on

how to reduce the impact of soil conditions. Here, all setup condition are determined

using reference Vehicle 4, studied in section 5.2.3.
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Vehicle classification occurs by taking one of the six crossings data per vehicle

per soil condition for testing, while the closest soil condition 6 crossings are used for

training, as mentioned earlier. Thus, in the testing phase, the classifiers used are

based entirely on crossings with different soil conditions data. There are six vehicles,

six runs, and three setups, for a total 108 rounds to account for all scenarios. To

classify the vehicles, a binary code between Vehicles 1 through 6 is created with

10 possible combinations, exactly similar to Test B. A perfect classification outcome

would provide a maximum of 32. A total of 24, 75% of perfect classification, is defined

as a satisfactory classification. If 24 is not reached, then the vehicle is considered UC.

Figure 5.11 shows the results for all of the rounds in graphical and confusion matrix

form.

The detection rate averages 76%, with individual accuracies exceeding 66% except

for Vehicle 3, which obtained a 44%. These results do not satisfy stated requirements.

When using different bridge setups for training and testing, the accuracy is reduced

considerably. The difference in classifiers created present a challenge for classification

that must be addressed. Since the results need improvement, additional soil condition

cases need to be examined to determine how many to use in training for success.

However, another option is to create a group index.

A group index should take into account the similarity of the responses as well as the

number of full load cycles it induces on the mobile bridge. Heavier vehicles produce

larger amplitude responses when crossing a bridge, inducing more full load cycles.

As more full load cycles are induced, the more the finite life gets reduced. Thus, to

develop a group index, thorough analysis of full load cycles should be performed in

the future.

Remarks: There are more challenges in capturing individual vehicle classification

if the training data set does not include the soil condition of the testing case.

Satisfactory results are obtained when the training and testing soil conditions

match, as shown in section 5.2.4. However, it is impossible to create classifiers

for all possible scenarios. To provide good detection rates under field imple-
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be extracted and matched to a specific vehicle with high success. These results are

above 90%, despite both vehicles being relatively similar.

The laboratory experiment demonstrated many important aspects of the algo-

rithm. Test A showed that a reference vehicle, Vehicle 4, can be used to distinguish

setup conditions. Test B showed that with various vehicles and soil conditions, unique

acceleration features are still produced, and when classifiers are trained and tested

with given soil conditions, individual vehicles are detected with relative ease. Finally,

Test C showed that if the training and testing soil conditions differ, which is similar

to field applications, the individual vehicle classification is not satisfactory and the

number of soil conditions to be included in the training data requires examinations.

These results are used to compile a recommendation, shown in Table 5.3. For the

experiments discussed here, these recommendations produce the best environment for

achieving required detection rates.

Table 5.3.
Best parameter settings

Parameter Recommendation

Vehicle speed Control speed rnage with a ground guide or signs

Soil Design training for low, medium and high SBC training classifiers

Index Consider an appropriate grouping strategy

Further REB studies with a broader vehicle range up to MLC 50 and soil condi-

tions is recommended to determine individual classification rates.
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6. IMPLEMENTATION RECOMMENDATION

Based on the results of the experiments and simulations in the prior chapters, a

procedure must be established to yield the most successful vehicle classification. A

successful implementation reduces under-classification, does not add any additional

time to the current procedure, and provides reliable detection rates, ensuring the

safety of the structure and users. The following sections explain how the current pro-

cedure works, how it can be improved, and how it can be generalized for application

to any mobile or temporary bridge structure.

6.1 Current Procedure

The REB can be emplaced, crossed, and retrieved in the field in under 10 minutes.

Initially, the bridge is inspected visually by a technician, checking that the RSLI are

not broken. Once it passes inspection, it is transported to the deployment site. Once

placed, the CBT crosses the bridge to ensure it is safe. After it is used, the CBT can

retrieve the bridge and continue its mission. This process is summarized in Figure

6.1.

As demonstrated, the only indicator used now for bridge serviceability is the RSLI.

If the RSLI break, the bridge is considered unserviceable and must be sent for repairs

or retrofit. The user cannot predetermine when they will break due to the broad range

of vehicles that cross. No accessible field data exists to show how many vehicle passes

actually occur before failure. Therefore, the user and fabricator need to count vehicles

passes to understand when and how the bridge fails. This is of great importance if

the RSLI’s break by accident, expending funds unnecessarily for both sides.

The bridge has proven to be successful in field operations. The quickness and

effectiveness for crossing spans under 13 meters allows a wide spectrum of operations
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no additional time to current process. It is impossible to predict and train for all

possible parameter variations. As more REB’s are used in the field, more information

regarding their actual use will be available. Using the results from sections 4 and

5, a practical approach can be established to create an environment where vehicle

detection is at its highest. A classifier database must be created with sufficient data

and cases to address the most common vehicles and parameters to which the bridge

is applied.

6.2.1 Training Classifier Database

The database will support training of the classifiers and thus its design should

address a range of realistic variations in the following parameters: soil, bridge length,

type and speed of vehicles, noise, and sensor filter. Tables 4.4 and 5.3 show the

summarized recommendations per the numerical and experimental investigations that

will be applied.

The REB is considered a quick emplacement bridge that does not need a thorough

soil study. Therefore, it can be assumed that as long as the bridge does not sink or

presents an unsafe behavior while being crossed, it will be used. The manual states

that it can be emplaced on a variety of soils, like loose coarse sand to overlaying rock,

which achieve an SBC above 450 kN/m2 [7]. The results in 5.2.5 help in understanding

that when the training and testing classifiers are not from the same soil parameter,

individual classes are hard to detect. Therefore, group indices should be applied.

Using this same guidance, producing training classifiers for three variations of soil

with SBC’s of approximately 500, 900, and 1300 kN/m2 can help provide sufficient

data for training.

It is impossible to ensure a specific bridge length is used for every field emplace-

ment. Length is the most sensitive parameter and the more information available,

the better the detection rate. The results in section 4.3.2 show that small ranges in

bridge lengths provide the best environment for detection. Using this guidance, it
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is recommended that the database be trained for 11 bridge length cases, at integer

lengths from 3 to 13 meters. It should be discussed if short span bridge lengths, under

4 meters, should be considered, since they may not be used frequently in the field.

Vehicle speed cannot be controlled nor considered constant while crossing the

bridge. However, sections 4 and 5 show that a small variations in speed, even while

crossing, decreases misclassification. Such variations would likely be present, and

should certainly be allowed in the training sets as well. The combined use of a

ground guide, vehicle speedometer, and maximum and minimum speed signs can

aid in enforcing limited variation of speed. With this is mind, it is recommended

that the training classifiers be trained in three general speeds: 15, 25 and 35 km/hr.

These three general speeds take into account the plus or minus 5km/hr variation,

guaranteeing that each crossing is relatively close to a trained speed classifier.

The algorithm is effective under high noise ratios. Since environmental noise is

hard to determine, training should be conducted using the most realistic field setting

to decrease sensitivity. Section 4.3.4 showed that the algorithm readily tolerates up

to an additional 10% noise for all bridge lengths, and up to 25% noise between 5 and

11 meters. Thanks to the high noise tolerance, multiple noise levels are not needed

to train the classifiers.

Section 4.3.1 showed that the best low pass filter setting is half of the data rate

and it is the recommended option here. Also, group indices provide the best vehicle

classification results. It is recommended that training occurs with all vehicles that

typically use the bridge and ensure all MLC classes are represented. This could yield a

conservative number of 10 different vehicles. Once the training occurs, the similarities

amongst vehicles should be studied to see what group index would be the best fit.

In summary, the following is recommended for creating the training database: 3

soils, 11 lengths, 3 speeds, 1 noise scenario, 1 filter setting, and 10 vehicles, for a total

of 990 scenarios, 99 per vehicle. The database size can increase or decrease if param-

eters are added or subtracted, respectively. The accelerometer on the REB will be

slightly off mid-span, which is better overall, as it can capture more bridge frequencies
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than if it were located mid-span, as explained in section 6.3.2. To capture the change

in vehicle direction, the training bridge could have an additional accelerometer in-

stalled to acquire the data on the other side of the bridge. This will only be used to

capture training data and would double the amount of data acquired, improving the

classifiers. Table 6.1 shows the summary of recommended parameters to create the

database.

Table 6.1.
Training database parameters

Parameter Values Variations

Soil SBC 500, 900, and 1300 kN/m2 3

Bridge length 3 to 13 meters, in integers 11

Vehicle Speed 15, 25, and 35 km/hr 3

Noise Realistic field environment 1

Sensor filter 1/2 data rate 1

Vehicles 10 vehicles (MLC 4 to MLC 50) 10

The database can be created in two weeks or less, if all the vehicles are available

and parameters are prepared. Once the database is created, only the classifiers will

need to be saved in the memory of the accelerometer boards and maintained. A

summarized flowchart of the database creation is shown in Figure 6.2.

6.2.2 Procedure Recommendation

The database creation allows the proposed recommendation to work as best as

possible. Summarized in Figure 6.3, the proposal adds a second inspection layer, the

engineer cell, and the CBT test crossing is now an algorithm calibration. The engineer

cell is composed of engineers that design and maintain structures in a specific area of

operation. These additional steps do not add any time to the current field application
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and it may save time and money when the engineer cell deems the bridge serviceable,

despite broken RSLI.

The proposed process starts with visual inspection of the bridge RSLI, as it is

a very important step that cannot be removed. If they are found to be broken, the

engineer cell will be able to make a determination if the bridge is safe to use, based on

the bridge vehicle histogram found in the memory. The fabricator and user currently

use a procedure that allows them to calculate how many specific classes of vehicle can

cross the bridge, known as finite life. The finite life calculation uses the stress ranges

different classes produce and applies Miner’s Law to determine the amount of passes

left before a repair is needed. This procedure is described in AASHTO LRFD Bridge

Design Specification [1].

Since the accelerometer on the bridge will track the vehicles histogram, finite

life can be estimated at any point, despite broken RSLI. For example, if a bridge

can handle 100,000 MLC 40 passes before failure and a local bridge database shows

that 80,000 equivalent MLC 40 passes have occurred, then the bridge can still be

used. This procedure saves time and money for both the user and fabricator, as the

bridge is not sent for repairs before its useful life and missions are able to continue.

Additionally, bridge repair timelines can now be estimated, better preparing both

parties. It is important to note that if the engineering cell does not have enough data

to make an informed decision, the RSLI will be the fall back safe plan to follow.

Once the bridge has been determined safe to use, the CBT can perform a test

crossing. While crossing, the acceleration response is matched internally to the bridge

database, calibrating it to a specific bridge length and soil range. As explained in

sections 5.1 and 5.2, knowing specific parameters improves the detection rate drasti-

cally. This calibration reduces the number of classifiers from 990 to 120, improving

the likelihood of correctly detecting the group. Once the soil and bridge length range

are set, vehicles can cross. When a vehicle crosses, the speed is estimated and a speed

range can be established. This improves the matching probability from 120 classi-

fiers to just 80. Once the speed range is set, the response is compared against the
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6.3 Generalized Bridge Application

The algorithm proved to be successful when applied to the REB and the laboratory

scaled bridge. These results enhances its possibilities for general bridges. Mobile and

temporary bridges, such as the armored vehicle launched bridge (AVLB) [40] and

Acrow bridges [2], may benefit from this procedure. This section provides guidance

on how to perform a generalized bridge application with the algorithm developed.

(a) Guanajibo, Puerto Rico (b) San Juan, Puerto Rico

Fig. 6.5. Temporary Acrow bridges

6.3.1 Assumptions

The basic premise that vehicles produce distinct features while crossing a bridge

was proved, both numerically and experimentally. However, it was developed under

a specific set of guidelines. Table 6.2 shows the guidelines to utilize the algorithm

successfully. These assumptions present the best environment for application. If the

bridge does not meet them, then a thorough study should be performed to determine

viability.
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Table 6.2.
General bridge application guidelines

# Guidelines

1 Single span bridge

2 Only one vehicle crosses at a time

3 Low pass filter is used

4 Representative training data is available with varying parameters

6.3.2 Application

The REB procedure was developed based on a sensitivity study that considered

various parameters. These parameters can change from bridge to bridge but a general-

ized method can be developed. The first step is to determine the type of accelerometer

that will be used and its power demand. The accelerometer selection is very impor-

tant, as it guides the cut-off frequency for the spectrograms as well as the power

supply required.

After accelerometer selection, the parameters of the bridge should be studied to

determine which are required for training. If the bridge will be as mobile as the REB,

then multiple training scenarios have to be conducted. However, if a temporary bridge

will be placed in a specific area for a longer time, the training could be conducted

within those guidelines. This means that only one soil and length parameters are

needed. These parameters are used to study the bridge frequencies.

Bridge frequencies are needed to determine the best placement for the accelerom-

eters. It is recommended that the accelerometers be placed in a location where it

can maximize the reading of multiple frequencies. For example, if located mid-span,

the user may lose readings from the second and fourth mode frequencies. However, if

they are located off center, it will capture them. Figure 6.6 shows poor accelerometer

locations that should be avoided while looking at the first four modes.
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Fig. 6.6. Poor accelerometer locations

The accelerometer placement is also related to the number of accelerometers that

will be used. If only one accelerometer is used, then only one classifier is trained per

crossing and the closest response match will determine the classification. However,

if multiple accelerometers are used, a binary classifier could be developed to create

a true group index match of 75%, similar to section 5. The user should determine if

they should use one or more accelerometers.

Once all the parameters and accelerometer placement have been decided, a database

can be created. Figure 6.2 shows the database flowchart for the REB that can be mod-

ified to meet any bridge needs. The database should include the most representative

vehicles and conditions. But once trained, the bridge is ready for use.

Remarks: Temporary and mobile bridges are used in military and emergency situ-

ations, providing access and mobility to accomplish a mission. These varying

applications need active monitoring to ensure it is safe to use. The procedures

outlined, based on the recommendations of section 6.2.2, provide the means to

implement the algorithm to temporary bridges. The implementation can help

monitor bridge activity, determine serviceability and save money.
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7. SUMMARY AND CONCLUSIONS

A vehicle classification algorithm was successfully developed to determine the class

of vehicle crossing a mobile bridge using acceleration responses. It shows promising

results in applications for single span mobile bridges such as the REB. The following

conclusions and future work recommendations lay the groundwork for real world

applications.

7.1 Important Conclusions

The results of numerical and experimental studies demonstrated that when a

vehicle crosses a mobile bridge, it produces distinguishable features that can be used

to create a strong classifier. The strong classifier is saved in a training database and

applied to future crossings to determine the vehicle class. This classification is used

to create a vehicle histogram that will aid in determining bridge serviceability. To

determine the best environment for vehicle detection, numerical and experimental

investigations were conducted.

The experiments determined the sensitivity of the results to the following pa-

rameters: bridge length, vehicle speed, soil condition, environmental noise, and ac-

celerometer filter. These studies guided an experimental and practical implementation

recommendation.

The numerical study provided insight into the following parameters: accelerometer

filter, bridge length, vehicle speed, and noise. The accelerometer filter study showed

that some filtering is better than none. When anti-aliasing filtering was applied, half

data rate filtering performed overall better than quarter data rate filtering. Thus,

half data rate filtering is the recommended procedure.
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The second parameter studied was bridge length. The bridge length results

demonstrated the most sensitivity, due to the change in the natural frequencies of

a bridge when the length changes. The spectrograms created are limited herein to a

cut-off frequency of 60 Hertz, which decreases the amount of distinguishable features

detected in very short span bridge lengths of three meters and below. The shorter the

bridge, the higher the natural frequencies when bridge properties remain constant.

However, if a training database is created with sufficient representative bridge lengths,

the results are able to meet the stated requirements satisfactorily. Therefore, creating

a database with sufficient representative bridge lengths will yield positive results.

The third parameter studied was vehicle speed. Vehicle speed is difficult to control

in the real world, as it depends on the driver and mission. It was determined that

the algorithm performs well under a speed range variation of plus or minus 5km/hr.

Additionally, if ground guides or speed signs are used, the speed is easier to control.

Thus, based on the results herein, a training database with at least three speeds

should be created. Additionally, vehicle speed should be controlled while crossing a

bridge to decrease the sensitivity of the results.

The fourth parameter studied was noise. The REB can be placed in a wide array

of environments with different noise levels. It was determined that noise does not

impact the performance of the algorithm much, as long as the training occurs in a

reasonably realistic noise environment. Additionally, noise tolerance can be as high

as 25% for some cases. Therefore, the REB should be emplaced in the most realistic

field environment to train the classifiers for the algorithm.

A second investigation was conducted experimentally. To physically validate the

algorithm, experiments are conducted on the REB and a laboratory scaled bridge.

The REB experiment demonstrated that, under a specific set of parameters, vehicles

produce distinct features and small speed variation does not impact the method. To

further study real world impacts, a laboratory scaled bridge was studied. The scaled

bridge provided insight into the fifth parameter, soil condition. Numerous vehicles and

drivers cross the bridge, simulating realistic uncertainties. It was demonstrated, yet
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again, that vehicles produce distinguishable features while crossing a mobile bridge,

even with small speed variation. Additionally, some vehicles maintain similar general

spectrogram features under different soil conditions. Also, reliable results are obtained

when training and testing occurs in the same soil condition. However, Test C demon-

strated that when training and testing soil conditions differ, vehicle classification is

reduced.

These results were used to develop a practical implementation procedure for the

REB. A database with multiple parameters was recommended for further implementa-

tion studies. These recommendations aim to provide the best environment to produce

reliable results.

7.2 Future Work

The numerical and experiment studies are quite successful and suggest a procedure

to follow for future studies. It is recommended to perform additional experiments

before real world application. The following recommendations are made to guide

further studies.

1. A full REB experiment should be conducted to collect sufficient data sets to

evaluate the sensitivity of the results to varying parameters. The parameter

variation could be studied as recommended in section 6 or as appropriate.

2. The full load cycles induced by different vehicles needs to be considered. The

results, along with the spectrograms created, can help develop a group index.

3. All experiments should be conducted in an outside field setting, which is more

likely to provide realistic ambient noise. This will demonstrate if the method

works under a variety of expected conditions. Experiments inside a facility

should be avoided.
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4. Individual and correlation classification methods have different advantages and

disadvantages. If additional accelerometers can be used in implementation, the

correlation classification system can be studied.

5. Shorter spans and higher SBC’s can increase the natural frequencies of a bridge.

Examining the classification outcomes using higher cut-off sampling frequencies

can help determine if the sampling frequency should be increased. This may

also be done using wired accelerometers and processing the data to simulate a

variety of choices.

6. The REB has a finite bridge life and its dynamic characteristics may change

over time. Examine if and how bridge dynamics change over time and how

robust the algorithm would be to such changes. This may also consider any

differences in the dynamics of individual REB units.

7. When a vehicle enters the REB, it may be traveling at a high speed and may

move the bridge horizontally. Over time, an unbalanced span bridge condition

may occur, where one side has more support than the other. This unbalanced

condition, along with induced horizontal accelerations, should be examined.

8. The REB is able to be emplaced at different shore heights. This change in

elevation and this scenario should also be considered.

9. Future experimentation should be performed with the accelerometer that will

be used in the method. This will provide the actual results expected to study

before implementation.

10. Additional numerical studies should consider the dynamic interaction between

the bridge and vehicles to closely match real world scenarios.
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